We're also on:  

Higher National Certificate in Electrical and Electronic Engineering
Department of Electrical and Electronic Engineering

< Back to Results
Awarding Body  Pearson BTEC Course Title  Electrical and Electronic Engineering
Award  Higher National Certificate   Award Level  QCF 4
UCAS Code HNC106H Study Mode  Full-Time
Start Dates September 2018 and January 2019 Duration 1 year
  1. About this course
  2. What you will cover
  3. Entry Requirements
  4. How to apply
  5. Fees and Finance
  6. Careers and employability
  7. Professional Recognition

About this course

BTEC Higher National Certificate in Electrical and Electronic Engineering is a specialist vocational programme, linked to professional body requirements and with a strong work related emphasis.

This course will introduce you to the key knowledge and skills in electrical and electronic engineering. You will explore engineering principles and science, circuit design and health and safety. You will also undertake a group project module, in which you will apply what you have learned to solving a design challenge of your choice.

You will be taught through a combination of lectures, tutorials and practical laboratory sessions. Your studies will be supported by trips to trade exhibitions, career fairs and guest speakers from the industry. You will also develop your transferable skills such as critical analysis, problem solving, negotiation, team work and planning to ensure that you have the awareness to succeed in the changing engineering sector.

You will be assessed through individual and group projects, case studies, oral presentations, time-constrained and written assignments.

General Entry Requirements

    If you are under 21 years of age at the start of the course, you must have at least one of the following:

    • At least one GCE A-level pass. In addition, you should have appropriate supporting passes at GCSE (including English and Maths at grade C or above) or Key Skills Level 2 qualifications in communication, IT and Application of Number or equivalent.
    • A Level 3 qualification such as: BTEC level 3 Diploma, National Diploma, Advanced GNVQ/NVQ, AVCE/VCE, Foundation Certificate in a relevant subject
    • Access to Higher Education in a relevant subject
    • Advanced Modern Apprenticeship with Level 3 qualifications in a relevant subject
    • Baccalaureate/International Baccalaureate
    • An equivalent foreign qualification
    • Any other level 3 qualification in a relevant subject

    If you are over 21 years of age, you may demonstrate a more varied profile of achievement that is likely to include relevant work experience and/or achievement of a range of professional qualifications in their work sector.

Careers and employability

BTEC Higher National Certificates are well-established and internationally recognised qualifications offering graduates progression directly to employment. This course will prepare you for a range of electrical and electronic engineering careers within public and private sectors.

You can progress to a wide range of careers in electrical and electronic engineering, e.g. electrical/electronic design, communication design, manufacture, maintenance and technical services areas of the engineering industry.

You can also study further for a Higher National Diploma or a degree in Electrical and Electronic Engineering.  

Professional Recognition

BTEC Higher National Certificate (HNC) in Electrical and Electronic Engineering is internationally recognised by employers and professional organisations. The recognition is a way for students to prepare for jobs and careers in the engineering sector through membership of relevant professional bodies.

The development of this qualification has been informed by discussions/relevant publications from the Engineering Council UK (EC (UK)) and the Science, Engineering and Manufacturing Technologies Alliance (SEMTA).

Graduates with relevant work experience qualify for the Technician Membership of the Institution of Engineering and Technology (UK).

What you will cover

    You will study these modules:

Year 1
HNEE 101Analytical Methods for Engineers - 4415
HNEE 102Engineering Science - 4415
HNEE 103Project Design, Implementation and Evaluation - 5520
HNEE 105Electrical and Electronic Principles - 5515
HNEE 106Health, Safety and Risk Assessment for Engineering - 4415
HNEE 115Electronic Computer-Aided Design - 4415
HNEE 158Microprocessor Systems - 4115
HNEE 163Electrical Power - 4415

Online Application & Eligibility Assessment

Note: Please scan your supporting documents, such as a photo, passport, visa, qualifications, references etc before starting the application form. You will also need access to your e-mail.

Apply through UCAS [Prefered]

Apply Online Directly

Please click here to proceed with Direct Online Application (opens in new window)

Fees and Finance

Tuition Fees for Academic Programmes

More Information:

Tuition fees for Full-Time Programmes - 2017/2018

Study Programme Yearly Fees
UK/EU Students
Higher National Certificate £6,165.00   1 year
Higher National Diploma
£6,165.00   2 years
Foundation Degree FdA £6,165.00   2 years
BA/BSc (Hons) £6,165.00   3 years
BA/BSc (Hons) Top-Up
£6,165.00   1 year

Tuition fees for Part-Time Programmes - 2017/2018

Study Programme Yearly Fees
UK/EU Students
Higher National Certificate
£4,500.00   2 years

Higher National Diploma

£4,500.00   3 years
Foundation Degree FdA £4,500.00   4 years
BA/BSc (Hons) £4,500.00   5 years
BA/BSc (Hons) Top-Up

£4,500.00   2 years

Important Notes

Undergraduate funding (2017/18)

Student Finance England

Full-time study
The majority of undergraduate funding comes from the Student Loans Company and is assessed by your funding authority. Please visit Student Finance England (SFE) website pages for detail information.


Eligible Undergraduate students can apply for a tuition fee loan of up to £6,165 to cover the full cost of their annual tuition fees. A maintenance loan (for living costs) of up to £8,430 is also available. This can be used to pay for general living costs, accommodation, travel and other course related costs.

The simple online calculator (https://www.gov.uk/student-finance-calculator) will give you an accurate idea of what level of student funding you will be eligible for.

Part-time study
If you are a part-time student you can apply now for a tuition fee loan. The maximum tuition fee loan you can get if you are a part-time student is £4,500 per year.
The amount you get depends on the cost of your tuition fees and not on your household income.
The tuition fee loan is paid directly to your university or college.
For more information and downloadable guides, visit the Direct Gov website

Repaying loans
You will not start repaying your student loans for fees and living costs until you have finished studying and you are earning over £21,000 a year. For more information visit the Direct Gov website https://www.gov.uk/repaying-your-student-loan

Other Sources of Funding

You do not have to apply for a tuition fee loan from the Student Loans Company to fund your studies. Some students use private funding or employer sponsorship to pay for their course.


Analytical Methods for Engineers - 4 [HNEE 101]

Unit type:Core

    This unit enables learners to develop previous mathematical knowledge obtained at school or college and use fundamental algebra, trigonometry, calculus, statistics and probability for the analysis, modelling and solution of realistic engineering problems. Learning outcome 1 looks at algebraic methods, including polynomial division, exponential, trigonometric and hyperbolic functions, arithmetic and geometric progressions in an engineering context and expressing variables as power series. The second learning outcome will develop learners’ understanding of sinusoidal functions in an engineering concept such as AC waveforms, together with the use of trigonometric identities. The calculus is introduced in learning outcome 3, both differentiation and integration with rules and various applications. Finally, learning outcome 4 should extend learners’ knowledge of statistics and probability by looking at tabular and graphical representation of data; measures of mean, median, mode and standard deviation; the use of linear regression in engineering situations, probability and the Normal distribution.

Engineering Science - 4 [HNEE 102]

Unit type:Core

    Engineers, no matter from what discipline, need to acquire a fundamental understanding of the mechanical and electrical principles that underpin the design and operation of a large range of engineering equipment and systems. This unit will develop learners’ understanding of the key mechanical and electrical concepts that relate to all aspects of engineering. In particular, learners will study elements of engineering statics including the analysis of beams, columns and shafts. They will then be introduced to elements of engineering dynamics, including the behavioural analysis of mechanical systems subject to uniform acceleration, the effects of energy transfer in systems and to natural and forced oscillatory motion. The electrical system principles in learning outcome 3 begin by refreshing learners’ understanding of resistors connected in series/parallel and then developing the use of Ohm’s law and Kirchhoff’s law to solve problems involving at least two power sources. Circuit theorems are also considered for resistive networks only together with a study of the characteristics of growth and decay of current/voltage in series C-R and L-R circuits. The final learning outcome develops learners’ understanding of the characteristics of various AC circuits and finishes by considering an important application – the transformer.

Project Design, Implementation and Evaluation - 5 [HNEE 103]

Unit type:Core

    This unit provides opportunities for learners to develop skills in decision making, problem solving and communication, integrated with the skills and knowledge developed in many of the other units within the programme to complete a realistic project. It requires learners to select, plan, implement and evaluate a project and finally present the outcomes, in terms of the process and the product of the project. It also allows learners to develop the ability to work individually and/or with others, within a defined timescale and given constraints, to produce an acceptable and viable solution to an agreed brief. If this is a group project, each member of the team must be clear about their responsibilities at the start of the project and supervisors must ensure that everyone is accountable for each aspect of the work and makes a contribution to the end result. Learners must work under the supervision of programme tutors or work-based managers.

Electrical and Electronic Principles - 5 [HNEE 105]

Unit type:Specialist

    Circuits and their characteristics are fundamental to any study of electrical and electronic engineering and therefore a good understanding is important to any engineer. The engineer must be able to take complex electrical circuit problems, break them down into acceptable elements and apply techniques to solve or analyse the characteristics. Additionally, fine tuning of the circuits can be performed to obtain required output dynamics. This unit draws together a logical appreciation of the topic and offers a structured approach to the development of the broad learning required at this level. Learners will begin by investigating circuit theory and the related theorems to develop solutions to electrical networks. In learning outcome 2 the concept of an attenuator is introduced by considering a symmetrical two-port network and its characteristics. The design and testing of both T and π networks is also covered. Learning outcome 3 considers the properties of complex waveforms and Fourier analysis is used to evaluate the Fourier coefficients of a complex periodic waveform. Finally, learning outcome 4 introduces the use of Laplace transforms as a means of solving first order differential equations used to model RL and RC networks, together with the evaluation of circuit responses to a step input in practical situations.

Health, Safety and Risk Assessment for Engineering - 4 [HNEE 106]

Unit type:Specialist

    This unit has been designed to develop the learner’s awareness of the principles, planning and implementation of health and safety practice within an industrial environment such as those to be found in engineering production, manufacture, services and maintenance and those in the chemical, transport and telecommunication engineering industries. In particular, the selection, application and evaluation of safe working procedures, for operations appropriate to particular industrial activities, are first considered. Then current UK and EU health and safety legislation, the role of the inspectorate, safety audits and current codes of practice are covered. Next, risk is assessed and evaluated by identifying, rating and assessing the severity of hazards and recording all evidence and actions taken for future monitoring of these hazards. Finally, risk management activities are considered including the methods used for gathering evidence, disseminating information, complying with current regulations and implementing policy to minimise risk to life and property, for activities within a general engineering environment.

Electronic Computer-Aided Design - 4 [HNEE 115]

Unit type:Specialist

    This unit will develop learners understanding of the applications of Electronic Computer-Aided Design and will enable them to apply ECAD to design problems.

    This unit investigates a range of Electronic Computer-Aided Design (ECAD) packages and their implications on the design process. It allows learners to evaluate ECAD tools and to appreciate how they influence the commercial  aviability of products. It is intended to give an insight into modern design tools and provide an opportunity for learners to develop operational skills using industry-standard software.

Microprocessor Systems - 4 [HNEE 158]

Unit type:Specialist

    This unit will develop learners’ understanding of microprocessor-based systems and their use in instrumentation, control or communication systems.


    This unit will develop learners understanding of the practical aspects of device selection and the interfacing of external peripheral devices. Learners will also study the key stages of the

    development cycle – specify, design, build, program, test and evaluate.


    The first learning outcome requires learners to investigate and compare the applications of

    microprocessor-based systems. Following this, learners will experience and develop software

    designs and write programs for a microprocessor-based system. The final learning outcome

    considers the design of programmable interface devices such as UARTs, PPIs, I/O mapped

    devices and memory-mapped devices. At this point, learners should be able to carry out the

    design, build, program and test of a programmable interface. This will include the selection and use of devices and the writing and testing of suitable software in assembler or high-level


Electrical Power - 4 [HNEE 163]

Unit type:Specialist

    Our modern world increasingly relies upon electrical power to supply our industries, commercial centres and homes with a convenient, flexible and reliable source of energy. To meet the client’s expectations, electrical energy must be provided at a reasonable cost and transmitted to the point of need, at the appropriate voltage and current levels. The client’s utilisation of the energy source needs to be appropriate, without undue complexity, to facilitate energy generation and transmission. This unit takes the learner through the complex process of analysing three-phase systems with consideration being given to harmonics and their effects. The methods of power distribution through the National Grid are then discussed with final economic considerations taken into account to enhance generation, transmission and distribution, with acceptable costs to clients. Throughout their working careers, modern engineers will have to consider new technologies and be able to evaluate the options available to make appropriate selections. With our global resources of fossil energy reserves decreasing and concerns over protecting the environment growing, alternative sources of energy are considered. Evaluative considerations will be made to inform the engineer of the issues associated with this topic, which may need to be considered far more at local and regional levels. Additionally, self-generation of electrical energy is now possible for a broad range of users throughout the world, utilising local environmental facilities.

< Back to Results


© 2018 The London College, is the trading name of The London College Ltd, a Non-Profit making Organisation, UK Registration No. 03611735, VAT: 266573962
The London College is accredited as "Premier College" by the Accreditation Service for International Colleges (ASIC).
ASIC is also recognised by the Council for Higher Education Accreditation (CH EA), Washington DC, USA